Human Motor Neurons (iPSC-derived, Normal)
Description | Product Code | Price | Quantity | Add to Cart |
---|---|---|---|---|
Cryopreserved, 1.0 million cells/vial
|
40HU-005-1M
|
$852.00 | ||
Cryopreserved, 2.0 million cells/vial
|
40HU-005-2M
|
$1,633.00 | ||
Cryopreserved, 4.0 million cells/vial
|
40HU-005-4M
|
$2,203.00 |
Product Description
Spinal motor neurons (MNs) are a highly specialized type of neurons that reside in the ventral horns and project axons to muscles to control their movement. Degeneration of MNs is implicated in a number of devastating diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth and poliomyelitis disease[1]. iPSC-derived motor neurons are valuable tools for biochemical analysis, disease modelling and clinical application of these diseases [2,3].
iXCells Biotechnologies is proud to provide the world’s first fully differentiated and functional human iPSC-derived motor neurons that display typical neuronal morphology and express all key markers of motor neurons, e.g., HB9 (MNX1), ISL1, ChAT (Figure 1) when cultured in the Motor Neuron Co-culture Medium (Cat# MD-0023). In addition, our iPSCderived motor neurons can also be co-cultured with myotubes or glial cells for drug screening platforms.
iXCells also provide customized differentiation service with your own iPS cell lines. Please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it. for more details.
Figure 1 (A) Immunofluorescence staining showing HB9 and ChAT positive cells on day 2 and 7 in culture respectively. (B) Flow cytometry measurements demonstrate >85% HB9 and >90% ISL1 positive cells on day 1-2.
Product Details
Tissue |
Human iPSC-derived motor neurons (Normal) |
Package Size |
1.0 million cells/vial; 2.0 million cells/vial; 4.0 million cells/vial (frozen) |
Shipped |
Cryopreserved |
Storage |
Liquid Nitrogen |
Media |
Motor Neuron Co-culture Medium (Cat# MD-0023) Motor Neuron Recovery Supplement (Cat# MD-0115) |
References
[1] Brady ST. (1993). “Motor neurons and neurofilaments in sickness and in health. Cell. 9;73(1):1-3.
[2] Dolmetsch R, Geschwind DH. (2011) “The human brain in a dish: the promise of iPSC-derived neurons”. Cell. 145(6):831-4.
[3] Payne NL, Sylvain A, O'Brien C, Herszfeld D, Sun G, Bernard CC. (2015) “Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases.” New Biotechnology. 25;32(1):212-28.
-
Wong, J. K., Roselle, A. K., Shue, T. M., Shimshak, S. J., Beaty, J. M., Celestin, N. M., Gao, I., Griffin, R. P., Cudkowicz, M. E., & Sadiq, S. A. (2022). Apolipoprotein B-100-mediated motor neuron degeneration in sporadic amyotrophic lateral sclerosis. Brain Communications, 4(4). https://doi.org/10.1093/braincomms/fcac207 -- Learn More
-
Liu B, Li M, Zhang L, Chen Z, Lu P. (2022). Motor neuron replacement therapy for amyotrophic lateral sclerosis. Neural Regen Res;17:1633-9 -- Learn More
-
Liu, Y., Dodart, J., Tran, H., Berkovitch, S., Braun, M., Byrne, M., . . . Brown, R. H. (2021). Variant-selective stereopure oligonucleotides protect against pathologies associated with c9orf72-repeat expansion in preclinical models. Nature Communications, 12(1). doi:10.1038/s41467-021-21112-8 -- Learn More
-
Shen, X., Beasley, S., Putman, J. N., Li, Y., Prakash, T. P., Rigo, F., . . . Corey, D. R. (2019). Efficient electroporation of neuronal cells using synthetic oligonucleotides: Identifying duplex RNA and antisense oligonucleotide activators of Human frataxin expression. RNA, 25(9), 1118-1129. doi:10.1261/rna.071290.119 -- Learn More
-
Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., Melamed, Z., Guo, L., . . . Cleveland, D. W. (2019). Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron, 102(2). doi:10.1016/j.neuron.2019.02.038 -- Learn More
-
Martier, R., Liefhebber, J. M., García-Osta, A., Miniarikova, J., Cuadrado-Tejedor, M., Espelosin, M., . . . Konstantinova, P. (2019). Targeting rna-mediated toxicity in c9orf72 als and/or ftd by rnai-based gene therapy. Molecular Therapy - Nucleic Acids, 16, 26-37. doi:10.1016/j.omtn.2019.02.001 -- Learn More
-
Melamed, Z., López-Erauskin, J., Baughn, M. W., Zhang, O., Drenner, K., Lin, N., Wu, D., . . . Cleveland, D. W. (2019). Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of tdp-43-dependent neurodegeneration. Nature Neuroscience, 22(2), 180-190. doi:10.1038/s41593-018-0293-z -- Learn More
- Marei, H. E., Althani, A., Lashen, S., Cenciarelli, C., & Hasan, A. (2017). Genetically unmatched human Ipsc and Esc Exhibit Equivalent gene expression and neuronal differentiation potential. Scientific Reports, 7(1). doi:10.1038/s41598-017-17882-1 -- Learn More
-
Danziger, S. A., Miller, L. R., Singh, K., Whitney, G. A., Peskind, E. R., Li, G., . . . Smith, J. J. (2017). An indicator cell assay for blood-based diagnostics. PLOS ONE, 12(6). doi:10.1371/journal.pone.0178608 -- Learn More
Biological | |
---|---|
Species | Homo sapiens |