Human Motor Neurons (iPSC-derived, TDP-43 mutation, Q331K, HET)

Description Product Code Price Quantity Add to Cart
Cryopreserved, 1.0 million cells/vial
40HU-103-1M
$1,327.00
Cryopreserved, 2.0 million cells/vial
40HU-103-2M
$2,024.00

 

Product Description

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease of the motor system, characterized by selective and progressive loss of motor neurons, eventually leading to paralysis and death within 2–5 years [1].  iPSC-derived motor neurons are valuable tools for biochemical analysis, disease modelling and clinical application of this disease.  Cytoplasmic accumulation and nuclear loss of the RNA binding protein transactive response DNA-binding protein 43 (TDP-43) from affected neurons in most instances of ALS [2-3]. Over 40 dominantly inherited mutations in the gene encoding TDP-43 have subsequently been identified in familial ALS patients [4], implicating TDP-43 dysfunction in the vast majority of ALS cases.

Human Motor Neurons (iPSC-derived, TDP-43 mutation, Q331K, HET) is derived from a genetically modified normal iPSC line carrying the heterozygous Q331K mutation in the TDP43 gene (Figure 1). iXCells™ hiPSC-derived motor neurons express typical markers of motor neurons, e.g. HB9 (MNX1), ISL1, CHAT, with the purity higher than 85%. iXCells™ motor neurons are available in both cryopreserved vials (2 million cells/vial) and fresh plate formats (12-well plate or 96-well plate). Most of the cells will express high level of HB9 and ISL-1 after thawing in the Motor Neuron Maintenance Medium (Cat# MD-0022). And after cultured in the medium for 5-7 days, these cells will express high levels of CHAT and MAP2.

40HU 103jpgFigure 1.Heterozygous Q331K mutation (highlighted in grey) has been introduced to TDP-43 gene using CRISPR/Cas9 based genome editing technology. The targeted site is verified by genomic PCR/Sanger sequencing.

 

Product Details

  Tissue Origin

  Human iPSC-derived motor neurons (TDP-43 mutation, Q331K, heterozygous)

  Package Size

  1.0 million cells/vial; 2.0 million cells/vial

  Shipped

  Cryopreserved 

  Media

  Human Motor Neuron Maintenance Medium (Cat# MD-0022)

 

References

[1] Taylor, J. P., Brown, R. H. Jr & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

[2] Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

[3] Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

[4] Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

 

 Download Datasheet

[1] Taylor, J. P., Brown, R. H. Jr & Cleveland, D. W. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016).

[2] Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

[3] Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

[4] Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

Biological
Species Homo sapiens

Information

Image
Image
Image
Image

Search Our Products